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STATISTICAL FILTERING OF SPACE NAVIGATION MI:‘.ASUREMENTS1

James E, I"otter2

Robert G. Stern

3

Massachusetts Institute of Technology

w5\ 5y

The criteria that have been used for design-
ingan estimator which computes the state vector of
a space vehicle from redundant navigational meas-
urements are reviewed and compared, It is shown
that under the assumption of linearity all these
criteria lead to the same estimator. (or filter).. If
all measurement uncertainties have Gaussian dis-
tributions, it is shown that the estimate obtained
from optimum filter theory is identical with the
maximum likelihood estimate.

A proof is presented that the Bayes esti-
mator, which is biased in favor of the initial con-
ditions, leads to the same result that would be ob-
tained from an unbiased estimator to which six
pseudo-measurements, representing the initial
conditions, have been added; -~ '

Although the theory hag been applied in the
specific area of space navigation, the results ob-
tained are generally applicable to the estimation

of multi~-dimensional random variables. é :

Nomenclature

General Notation

Underlining a lower-case letter indicates
that the letter represents a column vector,

An asterisk over a capital letter indicates
that the letter represents a matrix:

Enclosing a matrix within two vertical bars
indicates the determinant of the matrix..

Angular brackets < indicate the aver-
age value of the bracketed quantity.

1The analysis in this paper represents one
phase of research carried out for the National
Aeronautics and Space Administration under Con-
tracts NAS 9-153 and NaG 254-62,

2Staff Engineer, Instrumentation Labora-

tory i
3Staff Engineer, Experimental Astronomy

Laboratory

Superscript T following a vector or matrix
indicates the transpose of the vector or matrix,

Superscript —1 following a square matrix
indicates the inverse of the matrix,

Symbols
A symmetric matrix (in Section 7 and Ap-

pendix C)

r-by-s matrix (in Section 9)

P P

positive semidefinite r-by-r matrix (in Ap-
pendices B and D)

b3

1 r-by-r auxiliary matrix (in Appendix D)

b mean value of positive semidefinite quad-
ratic form which is to be minimized

*

B symmetric matrix (in Section 7 and Ap
pendix C) :

*

B s8-by-r matrix (in Section 9)

* .

B r-by-s matrix (in Appendix B)

*

B _positive semidefinite r-by-r matrix (in Ap-
pendix D)

* .

Cji n-by-n state transition matrix

d i-th diagonal element of D

diagonal matrix

Ox Us

1 auxiliary diagonal matrix

e error vector associated with the estimated
state vector 2_

g error vector associated with QB

E covariance matrix associated with e

EB covariance matrix associated with e B

EU f\ovariance matrix associated with error in
Xy

*1;‘ A arbitrary unbiased filter

%B arbitrary biased filter

§‘B' unbiased filter which has same covariance

*
matrix as FB
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maximum likelihood filter

maximum likelihood filter which includes
the fictitious measurements

optimum biased filter
n-by-n residual matrix (in Section 10)

arbitrary unbiased filter which includes
the fictitious measurements

many-body gravitation vector

3-by-3 matrix relating §¥ to 61
non-negative constant

unit vector in direction of k-th coordinate
k-by-n matrix relating m to x

k-by-n matrix relating mptox

(k + n)-by-n matrix relating mytox
identity matrix

n-by-k matrix equal to %A minus %ML
number of measurements being processed
likelihood function of x

principal subdeterminant of matrix >i‘M
true measurement deviation vector
observed measurement deviation vector

true measurement deviation vector for

measurements actually made (in Section 10)
observed value of mp
measurement deviation vector which in-

cludes the fictititious measurements
observed value of_rgU ‘
element in i-th row and j-th column of l’\kll
symmetric matrix (in Appendix A)

nonsingular matrix used to diagonalize K
and B (in Appendix C)

orthogonal matrix which diagonalizes K
(in Appendix D)

number of dimensions of x

X
inverse of M (in Appendix C)
zero matrix

probability density of u

p(in|x) probability density of M given x

plu|x) probability density of u given x
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vector equal to I)\c/I hy (in Appendix C)
number of dimensions of w

positive semidefinite matrix

position vector

inertial acceleration vector

variation in position vector

&r evaluated at t = ti

variation in inertial acceleration vector
gq-by-n matrix relating wto e

*
vector constituting i-th column of Ay (in
Appendix D)

time
trace of a square matrix
measurement uncertainty vector

measurement uncertainty vector corres-
ponding to m o

measurement uncertainty vector corres-
ponding to m ;

covariance matrix associated with u
covariance matrix associated with up
covariance matrix associated with u ,
velocity variation vector at t = ti
volume of error ellipsoid

vector whose error ellipsoid is to be

minimized

covariance matrix associated with w
i-th component of x

true state vector

true state vector evaluated at t = 'ci
estimated state vector

biased estimate of x

unbiased estimate of x which includes the

fictitious measurements
r-dimensional vector equal to ﬁg
arbitrary s-dimensional vector
zero vector

gamma function of the argument

—
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Subscripts

%
A relating to filter F A
: . #
ML relating to maximum likelihood filter Fp,,
*
OB relating to optimum biased filter Fop

1. Introduction

The vector equation of motion of a space
vehicle in free flight in a many~body gravitational
field is

2= gt

X (1-1)
The inertial acceleration ¥ is due entirely to the
many-body gravitation vector g, which is a function

of both spatial position and time.

In the usual guidance analysis Equation (1-1)
is linearized by assuming that the vehicle's actual
position and velocity at any specified time differ
only slightly from the pre-computed nominal, or
reference, position and velocity at that time. If
the symbol 6 is used to signify the variation of a
quantity from its nominal value, “the linearized
equations of motion of the vehicle can be written in
matrix form as follows:

5% = G or (1-2)

Here 67 and or are three-component column vec-
tors and G is a 3-by-3 matrix which is shown in
Reference (1)to be symmetric for any gravitational
field. The elements of é are functions of the char-
acteristics of the reference trajectory and are in-
dependent of the components of 6r.

Equation (1-2) represents three second-
order linear differential equations with variable co-
efficients. The solution of the system contains six
constants of integration. When the mathematical
model is gpecified and the reference trajectory has
been pre-computed, the motion of the vehicle along
its actual frajectory can be completely determined
once the six integration constants have been eval-
uated. The object of this paper is to examine tech-
niques for estimating the integration constants from
a set of redundant measurements, each of which is
corrupted by noise,

2. The State Vector

The integration constants are conveniently

grouped in the six-component column vector x,,

known as the '"'state vector," which consists of the
three components of 6£i and the three components
of the velocity variation vector 4v, at some speci-
fied time t;.

X (2-1)

Various values of 'ci have been used in the
literature to define the particular state vector in
terms of which the actual motion of the vehicle is
expressed. For example, in Reference (2)ti is the
time of cut-off of the main propulsion system and
thus the time of initiation of the free-fall trajectory;
in References (3)and (4)ti is the "current" time,
that is, the time at which the most recent measure-
ment was made or the time at which the next meas-
urement is to be made; and in Reference (S)ti is
the nominal time of arrival at the destination.

The goal of the data processing is to mini-
mize the errors in the estimate of the components
of X,. It is shown in the later sections of this
paper that, for the estimation techniques consid-
ered, the filter which minimizes the r.m.s. un-
certainties in the components of the state vector at
one specified time minimizes the r.m. s, uncer-
tainties in the components of the state vector at aﬁy
other time.

If positioh variation is more significant
than velocity variation, as is the case for the des-
tination state vector when the mission objective is
to pass through a fixed point in inertial space at a
fixed time, one might hope to get a more accurate
estimate of position by designing a filter which
minimizes the r, m, 8, position uncertainty without
It will be shown
that the estimator which minimizes the r.m. s, un-

regard for velocity uncertainty.

certainty in the state vector also minimizes the
r.m. s, uncertainty of any sub-vector of the state
vector, and thus no improvement in the estimate
can be achieved by neglecting the variation in
velocity.

This concept can be extended to show that
the same estimate is obtained even if the six in-
tegration constants being considered consist of the
components of position vari;ation at one time (e. g.,
the time of arrival at the destination)and the com-
ponents of velocity variation at a different time

{e.g., the "current” time).



3. Methods of Degigning Estimators

The conventional methods of designing es-
timators for a multi-dimensional random variable
fall into two main categories — the method of max-
imum likelihood and the technique based on opti-
mum f{ilter theory,

The maximum likelihood method was de-
veloped by statisticians and is based on the con-
cept of maximizing a particular conditional prob-
ability. Practical estimators can be obtained
from the method only by assuming that the indi-
vidual measurements are normally distributed.

The object of optimum filter theory is to
find a linear estimator which minimizes some
function of the variances and covariances of the
uncertainties in the estimated state vector. The
develo'pment of the theory does not depend on the
assumption that the uncertainties in the measure-
ments are normally distributed.

Irrespective of whether maximum likeli~-
hood theory or optimum filter theory is used, it
is possible to obtain either an "unbiased'" or a
"biased" estimate. An unbiased estimate is one
in which only the direct measurements are used
and no assumption is made about the a priori dis-
tribution of the uncertainties in the components of
the state vector. The unbiased estimator is char-
acterized by the fact that the estimated state vec-
tor coincides with the true state vector if all meas-
urements are perfect., A biased, or Bayes, esti-
mate is one in which the a priori distribution of the
uncertainties in the components of the state vector
is taken into account,

4. Optimization Criteria

There are three general types of criteria
that have been used in applying optimization tech-
niques to the redundant data problem. The first
type, which is relevant to the method of maximum
likelihood, consists of determining that state vec-
tor x which maximizes the probability density of
the occurrence of the measurements that have
actually been obiained. This probability density is
known as the likelihood function.

The second type of criterion involves mini-
mizing the volume of the error ellipsoid associated
with some linear function of the uncertainties in the

components of the estimated state vector. If e is

the n-dimensional column vector containing these
uncertainties and if the vector w is given by

w = *ftg (4-1)

then the error ellipsoid in w-space is defined by

the equation
_ng Wt w=1 (4-2)

)k . . . s
where W is the covariance matrix associated with

W =<__vy !V_T> (4-3)

For example, if w is equal to e, R becomes the

w.

identity matrix; if w consists of only that p:rtion of
e containing the uncertainties in position, R is the

following 3-by-6 matrix.

1 o o o 0o o
R=1|o 1 0 0 0 0 (4-4)
0 0 1 o 0 0

The third type of criterion minimizes the
mean value of a positive semidefinite quadratic
form in the uncertainties of the estimated state
vector. In mathematical notation, the quantity to

be minimized is

b = <_9T6_g> (4-5)

* s s s .
where Q is a positive semidefinite matrix.

5. Mathematical Model

The number of measurements being proc-
essed is designated k; these measurements are
combined in a k-dimensional column vector m. In
order to justify the use of linear theory, the com-
ponents of m are the deviations of the measured
values from those values which would be observed
ideally if the vehicle were on its reference tra-
jectory.

In the general case x, the parameter vector
to be estimated, is of dimension n. Since it is as-
sumed that redundant data are available, k is
greater than n. For the state vector in space navi-

gation n is equal to six.

The vector m is assumed to be linearly re-
lated to x in a manner that is a known function of

the reference trajectory and of the type and time of

each measurement.

g 4
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me Hx (5-1)

f-l is a k-by-n matrix whose elements are pre-
computed. The rank of ?I must be equal to n, for,
if this were not 8o, x could not be determined
from m,

The observed value of the measurement
vector is fi, which differs from the true value due

to the uncertainties in the individual measurements.

The difference between fii and m is equal to the
measurement uncertainty vector u.

(5-2)

The covariance matrix of the measure-
ment uncertainties is the symmetric k-by~k ma-

*
trix U.
b =Cu T
*

For any practical case U is a positive definite

(5-3)

matrix,
The estimate of the state vector obtained
from any ofthefiltersto be developed is designated

_Q_. The error in the estimate is e.
e =X~ x (5-4)

*
The covariance matrix of the components of ¢ is E.

B-e e

6. Maximum Likelihood Theory

(5-5)

The likelihood function L(x), in mathemat-
ical terms, is

L(x) = p(m | x) (6-1)
where p(f | x)1s the probability density of the ob-
served measurement vector M, given the state vec-
tor x. From Equation (5-2), M is the sum of a
deterministic function of x and the random vector

u. Therefore,

P | x) = plu| x) (6-2)

The probability density of u is independent of x, so
that

L(x) = (6-3)

p(u) is the joint probability density of the com-
ponents of u. The components of u are assumed to
have a joint Gaussian distribution. Then,

plu)

L) exp (—% !T 1 u (6-4)
X % =
[2m® | T|] /%

where | %JI is the determinant of ?I.

Since log L(x)is a monotonically increasing
function of L(x), maximizing the logarithm with
respect to x ylelds the same value of x as maxi-
mizing the likelihood function itself,

log L(x) = -% log‘[(?nr)k Hﬂ]- %_‘_J_T fJ'lg

- - ytog[en® [B]]-1 @-H0TH @ - p

v

(6-5)

The partial derivative of log L(x) with respect to
x;, one of the components of x, when all other com-
ponents of x are held constant, is

T
8 log L(x) 3 x £T * -
X’ 1 X T ¥-1 _x
—————axi 3 | Fx, B U " (m=-Hx)
+(m—?§5)TfJ'1%.a_5_
X

(6-6)
The second term on the right-hand side of Equation
(6-6)1is the transpose of the first term. Since both
terms are scalar quantities, they are equal to each
other,

8 log L{x) dx

(6-7
3 X,

x o
U@ -fw

9 xT
The partial derivative __—

Bxi

tor with a one in the i-th position and all other com-
Therefore, the right-hand side of

is a row vec-~

ponents zero.

" Equation (6-7) represents the i-th component of the

2T %]
column vector H1 U~ (m -~ H x). When the likeli-
hood function is a maximum, each of the n partial
derivatives of log L(x) with respect to the com-

ponents of x vanishes. Then,

- *
%T%I(ﬁ-ﬂx)= (]

(6-8)

The solution of (6-8) for x is _/JEML, the maximum
likelihood estimate of x,

% ~
= Fypm

1>

ML (6-9)
where -
* * ¥ - - -
Fpp = GTU R THT 72 (6-10)



It may be noted tha.

Fl\ILH =1

so that the maximum likelihood filter %‘ML is an

(6-11)

unbiased filter.

From Equations (5-2) and (6-9),

Fa _ * € b3
XnL T Fap HX + Fyp 8
%*
=x + Fypu (6-12)

The error eaIL in the maximum likelihood esti-

mate is

A x*
=X -x = F

£aiL ML

%
The covariance matrix EML is then given by

% T
Epp =Ko enL >

(6-14)

7. Gauss-Aarkov Theorem

If K and E are sy mmetrlc matrices, K will
be sa1d to be greater than B if the matrxx difference
Similarly A 2 B will
indicate that (A - B) is positive semidefinite, The

(A - B)is p051t1ve deﬁmte

standard definitions of ''positive definite' and
p051t1ve semidefinite’" are given m Appendlx A.
It is important to note that A > B does not
imply that each element of A is greater than the
corresponding element of ?3. For example,

4 0 2 1

even though the off-diagonal elements of the right-
hand matrix are larger than the off-diagonal ele-
ments of the left-hand matrix.

The Gauss-\Nlarkov theorem states that
under the assumptions postulated in Section 5 E‘\’IL
is less than or equal to the E matrix for any other
unbiased estimator. This theorem indicates that
the variance of the component of the estimation un~
certainty in any given direction in state space is
minimized by the maximum likelihqod estimate,

To prove the theorem, let FA be an arbij-

trary unbiased filter., The corresponding state

vector /\\ is
=A

A 3 Ed
= -1
Xp=FyHx+Ww (7-1)
Since the filter is unbiased,
¥ %
= 7-2
FyH=1 (7-2)
Then, the estimation error ea is
A *
= - = 7-
ep=Xp-x=Fpu (7-3)
%
The covariance matrix EA is given by
% %
7-4
By-Cepeap=FoUF, (7-4)
&
If J is defined by
* % *
J=Fp = Fpy, (7-5)
% %
the product J H is
¥ x k& * T
= -_— = - = —6
JH=Fy H-Fy, H=1-1=0 (7-6)
ituti J+F (7-4) yield
Substituting FA J+ FML into ylelds
B kR AT |k R K T
EA-JUJ +J U Fyyy,
* Xk % T.T * % T
+(JUFML) +FMLUFML
(7-7
From Equations (6-10)and (7-6),
% * ok KT ko] % - *
JUF,, T-TRET U -0 (-8
From Equations (6-14), (7-7), and (7-8),
* * _ % % 2T )
EA—EML—JUJ (7-9)

In Append1x B it is shown that, since U is
positive definite, J U J {s positive semidefinite,

Therefore,
*

*
T-
E, > E (7-10)

ML

* L. ¥ % T
Because U is positive definite, J U J~ can be zero

%
only if J is the zero matmx Conseque:tly, EA can
be equal to EML only if FA is equal to FML'
It may be noted that in this derivation it has
not been necessary to assume that the measurement

uncertainties have a joint Gaussian distribution.

8. Minimizing the Volume of the Error Ellipsoid

The first type of optimum filter to be de-
veloped is that which minimizes the volume of the
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error ellipsoid in w-space. The equation of the

error ellipsoid is (4-2). Its volume is

g *
. 2 |w|1/2 .

(8-1)

where wis a q-dimensional vector, It is apparent
that, for a given value of q, the volume of the
ellipsoid is a function of the square root of the
determinant of the covariance matrix %V Thus,
minimizing the ellipsoidal volume is equivalent to
minimizing | W|

By the use of Equations (4-1)and (4~ 3)W
may be written in terms of R and i‘.

W-lwa™>-RERT (8-2)

‘IS x]:SML and *EA are, respectively, the co-
variance matrices associated with the uncertain-
ties in the maximum likelihood estimator and with
any other unbiased estimator, then from the
Gauss-Markov theorem (E - ;:ML) is positive
semide:imtr’"!‘n Appendix B-it is shown that, if
(E )ia positive ‘semidefinite, the matrix
product %(EA - E )'ﬁ , which is equal to
(W - WML) is also positive semidefinite, Fin-
ally, from Appendix C,

ﬁvA[ > !"vaMLl (8-3)

Therefore, use of the maximum likelihood esti-
mator results in the minimum volume of the error
ellipsoid in w-space,

It may be shown that if WA—>- \j{VML the er-
ror ellipsoid corresponding to the maximum like-
lihood estimator 18 contained in the error ellipsoid
corresponding to the other estimator,

If the estimator %‘ A actually minimizes

| ")kV 'so that

W, |- |’§‘;VML| (8-4)

then from Appendix C the two al matrices are
equal.

W, - W

a® VML (8-5)

Thus,

) ® R ok % ox Ly .
REAR -REMLR (8-6)

P
If q = n, so that R is of rank n and can be inverted,

g 5
E A= EML (8-7)
In Section 7 it was shown that Equation (8-7)implies

that

Fp o= Py (8-8)
Therefore, when q = n, the optimum filter is
unique, '

If 9 < n, there may be a fimily of filters
F A’ only one of which 13 equal to FML' all satis-
fying the criterion that W be minimized.

One possible type of R matrix for the case

&
. q = nis the state transition matrix C i which trans-
. forms the state vector x, at time t, to the state vec-

tor x. at time t_.
=i 3

Xg = Ejiii (8-9)
Then e is the error vector associated with -’Sli' and
w correspondingly is the error vector associated
with x., Since q = n, the unique filter which mini-
mizes the volume of the six-dimensional error
ellipsoid associated with the state vector x, is also
the unique filter which minimizes the volume of the
six-dimensional error ellipsoid associated with any
other state vector x i Thus the time to which the
state vector is referred does not affect the accuracy
of estimation,

If the fl matrix is a hybrid state transition
matrix which transforms x; into a vector consisting
of the position variation at one time and the velocity
variation at another time or into position {rariations
at two different times or into velocity variations at
two different times, the same estimate of the state
vector Xg at some arbitrary time t is obtained as
long as ﬁ is nonsingular.

If the error ellipsoid to be minimized is
associated with only the position components of
some state vector, q < n, and in that case the
maximum likelihood filter is only one of a set of
possible optimum filters. )

9. Minimizing Quadratic Forms in the Estimation
Uncertainty

In Section 4 it was pointed that one of the
criteria used in applying optimization techniques
is minimizing the statistic ‘

=<3T a_e_> (9-1)



Several versions of the positive semidefinite matrix
a are of practical importance. If a is the identity
matrix, the square root of b is the r.m.s. value of
the magnitude of the error vector &5 associated

If Q is equal to E T *
the square root of b is the r.m. s. value of the

with the state vector x5 ji'

.magnitude of the error vector Ej associated with
%k
.92 If Q is given by

i 5

8§ - (9-2)
*
) hi

where h is a non-negative constant, the minimiza-
tion involves velocity variation components that
are weighted differently from the position varia-
if h = 0, the vel-
It is also possible
to choose *Q such that b is equal to the mean of the

tion components. In particular,

ocity components are ignored,

sum of the squares of the position estimation un-
certainty at one time and the velocity estimation
uncertainty at another time,

Since gT & eis a scalar (a 1-by-1 matrix),

it is equal to its trace, Then (9-1)becomes

b=Cir (7 Qo)

In Referencci’T it is shown that if K is an r-by-s

(9-3)

matrix and B is an s-by-r matrix,

(9-4)
Then,

b =<tr[(§_T 5);]) =
= tr‘[<ggT> 6] = tr (*E(I a)

It will now be shown that the maximum like-

(9-5)

lihood filter FML minimizes the statistic b.

The Gauss-Markov theorem shows that
(E A ’EML) is posttive semideﬁnite In Appendix
D it is shown that if (E L) and § are both
positive semidefinite,

r[(% -E ) *Q]zo (9-6)
A ML
Thus,
r(k, Q> By, O (9-7)
or
by 2 by, (9-8)
When filter FA minimizes b, so that bA is
equal to bML' then

(9-9)

*
If in addition Q is positive definite, then from Ap-

pendix D,

® ®

EA = EML (9-10)
From Section 7, Equation (9-10)implies that

% *

Fp=Fpp (9-11)

This equation indicates that the optimum filter is
unique as long as *Q is positive definite,

In Sections 6, 8, and 9, three different
optimization criteria have been investigated. It
has been shown that, regardless of which of the
three criteria is used, the same optimum filter is
obtained. This statement is true wheén any linearly
independent set of six integration constants is used
to define the vehicle's variant motion.

10, Biased and Unbiased Estimates

In this section it is proved that an unbiased
estimator based on n fictitious measurements in
addition to the k actual measurements can be con-
structed with the same covariance matrix E as a
given biased egtimator based on the k actual meas-
urements. Conversely, a biaged estimator can be
constructed which has the same covariance matrix
as a given unbiased estimator in which the n fic-
titious measurements have been taken into account.
As a consequence of these facts, there is an op-
timum biased estimator ’%‘OB which simultaneously
minimizes the volumes of all error ellipsoids and
also the means of all positive semidefinite quadratic
forms in e.

Biased estimators are important because
they utilize available information in addition to that
which is obtained from the direct measurements,
The additional information is in the form of the first
and second moments of the a priori uncertainty of
the state vector x.

When the optimum biased estimator is used,
the resulting estimate of x i8 more accurate than
that which can be obtamed from the optimum un-
biased estimator FML’ in the sense that EOB <

3

E and b

oB=P
The measurement deviation vector which

relates only to the measurements actually made will

ML




fot

«

be designated mg for biased estimation. The k-by- The covariance matrix U

n matrix relating m mpg toxis HB

* .
mp=Hyx . {10-1)

Correspondingly, the measurement uncertainty
zector lsup, and its covariance matrix is ’{IB'
Fg is the biaged filter that is to be uged.

A X o~
Xy = Fgig (10-2)

where QB is the biased estimate of the state vector.

It i{s assumed a priori that the mean value of x is
the zero vector. The error vector for '2 pleeg
which is defined by '

A _ .
&g = Xgp -~ X ’ (10-3)
*
Ep is the covariance matrix associated with e 5.

The unbiased measurement deviation vec-
tor which includes the fictitious measurements is
My
Zpg

(10-4)

X

The fictitious measurements are assumed to be
the components of the state vector x.
unbiased measurement vector is

Mg
(10-5)

|32

. *
The (k + n)-by-n matrix Hy; relates m; to

Xx.
: (10-6)
my=Hyx
where I‘SIB
*
Hy = ’f _ (10-7
The measurement uncertainty vector uy; s
Yy "Wy - my
iB
= (10-8)

%U is an n-by-(k + n) matrix, while %B is an n-by-k

*
matrix, IfF

*
where the residual matrix F
It will now be shown that if FU is to be unbiased,
then

The observed

utl
fJU = <EU Yy
Uy -Lugx®

< 2y > <§!T

- (10-9)

The unbiasged estimate % Xy and the unbiased

filter FU satisfy the equation

ok

A ~
Xy = Fymy (10-10)

B is given, then

* _ [ * * ] 1
FU = FB FR (10-1

is an n-by-n matrix,

* *
F = -

B 0-12)
R FgHp (10-1

For an unbiased estimate,

iy -1

U U (10-13)
From Equations (10-7)and (10-11),
f
£ % rx % B
Fyhy = [Fg Fp ]
*
I
LB N L
= FB B FR (10-149)

When (10-13)and (10-14) are solved for Fp, Equation
{(10-12)is obtained.

By Equation (7-4), the unbiased covariance
matrix E is given by

E. =% U. %

T
U uv'ufu (10-15)

The uncertainty vector e 5 can be written in
terms of the unbiased filter characteristics by utiliz-
ing Equations (10-8), (10-11), and {10-12).



e~ FglHgx * Fgug - x

% *.

*Fpupg - Fgx
LB

_x _x )

= Fy Fiy iy (10-16)
-x

Finally,
x0T
={ep 25"y = Fy Uy FyT ao-1m

By comparing (10-15) with (10-17), it is seen that

% *
E, = E

U (10-18)

B

By reversing the argument presented in
Equatlons (10-11) through (10-18), it may be shown
that if F is given and *FB is obtained by deleting
the last n columns of FU' then the biased and un-
biased covariance matrices obtained satisfy Equa-
tion (10-18), )

Thus, irrespective of whether one starts
with a biased or unbiased filter, a filter of the other
type can be constructed such that the two filters
have identical >=‘E matrices.

Deleting the last n columns of the maximum
likelihood filter %ML' obtained with the use of fic~
titious measurements yields the optimum biased
filter %OB Then,

*
E

E B

OB <

(10-19)

where %B is the covariance matrix associated with
the estimation uncertainty obtained by the use of
any other n-by-k filter *FB. This is true l;)ecause
there is an n-by-(n + k) unbiased filter Fp with
covariance matrix EB' and by the Gauss-Markov

theorem

Eg 2 Ey;, * Fop (10-20)

Therefore, all the expressions developed in
Sections 8 and 9 relating optimum unbiased filters
to other unbiased filters are also applicable to the
relationship between optimum biased filters and
other biased filters.
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APPENDIX A

%k
A symmetric r-by-r matrix M is said to be
positive definite if the quadratic form

Mx >0 (A-1)

for every non-zero vector x. If _1gT i x is greater
than or equal to zero but not necessarily greater
than zero for every non-zero vector Xx, I*VI is said to
be positive semidefinite,

The principal subdeterminants of a matrix
may be used to test whether or not the matrix is
posmve definite, The principal subdeterminant my
of M is defined as the determinant of the k-by-k
matrix formed from the elements in the first k rows
if the
element in the i-th row and j-th column of M is

designated Mij‘

and the first k columns of M For example

m, = M11 (A-2)
My; My,
m, = (A-3)
My, My,
and
*
m = |M| (A-4)

* : .
M ig positive definite if and only if all of its prin-
cipal subdeterminants are positive. If some of the
principal subdeterminants are zero but none are

negative, M is positive semidefinite.
APPENDIX B
%
Theorem: If A is a positive semidefinite
%
r-by-r matrix and B is an arbitrary r-by-s matrix,

X T XX
thenthe s-by-s matrix B' A Bis positive semidefinite.
Proof: Let z be an arbitrary s-dimensional

vector and let

y =Bz (B-1)
Then .
3
XT31=§T§T2\B_Z_ >0 (B-2)
T %k

because X is positive semidefinite. Hence B A B

is positive semidefinite.




Py

APPENDIX c

Co . ‘ _ _
Theorem: Let K and B be symmetric r~by-
r matrices such that

A>B>0 (c-1)
Then, o _
Xl > IB] > o (c-2)
Also,
Bl = |4} (C-3)
only if .
B =4 (C-4)

Proof: By a matrix theorem used in the
theory of vibrations (Page 47 of Reference (8)), A

and B can be simultaneously diagonalized by a non-
*

singular matrix M.

MTAM=D (C-5)
MTBM-T (€-6)

where D isa diagoml matrix whose i-th diagonal
element is d;; M N h%ommut M‘_u '

A-B - NT(ﬁ hx (Cc-

Let hk be a column vector whosé k-th coin—
ponent is one and whose other components are all

zeros, Let
P, - M h, (c-8)
Then
B A-Bip, = (4 -1 >0 (C-9)

The inequality holde because (A B) is poamve

semidefinite, From (C 9)
cd>1 (C-10)
for k=1, R .
The determimnts of ﬁand K are given by
5] = 1%l2 (C-11)
% * 12 *
|A| =4, g, ,...drINl =d; d,....d |B]
o (C-12)
In consequence of (C-10), (C-11), and (C-12),
Al > I%I > 0 (C-13)
#lBl = |Al, q) =gy =. ... =d =1,

and from (C-7)

_elements,

A-B-1%

(C-14)
APPENDIX D

Theorem; Let X and ﬁ be positive semi-
definite symmetric r-by-r matrices, then

trAB) > 0 (D-1)

If K is positive semidefinite and ﬁ is positive def~
inite, then

tr(A By = (D-2)
only if

A:5

Proof: Since A is positive semidefmite it

(D-3)

can be dmgonahzed by an orthogonal matrix M

*

D - MTAM (D-4)

*
where D is a diagonal matrix whose i-th diagonal
*
element is di’ The fact that A is positive semi-

definite implies that

d, > 0

fori=1, ... ., r, Let Bl :be 8 dié.gonal matrix
whose i~th diagonal element is dill 2 Then
B ET
b= b b, (D-6)
Now,let
® ¥ %k p
Ay=MD; M (D-7)
Because M is orthogonal, it follows that
K KTt b, BT DT T
1M 1
]
-mDMT -4 (D-8)
Since tr(ft B) = tr(B =°‘A),
*® % _ ] * T *
tr(A B = tr [A,(A,T B)]
* * %
-tr(A,TBA) (D-9)

: * & %
By Appendix B, the matrix AIT B A1 is positive
semidefinite and therefore has non-negative diagonal

Thus, in view of (D~9),"
B> o (D-10)

To prove the second part of the theorem, let

A be partitioned into column vectors s 8

) L -p_._!'.-

(D-11)

11



Then if tr(A B) = 0, it follows that 6.

_ BT Ok % - sk %
0=tr(A," BA) - tr(Al [B§1....B§r])

*x
Since B is positive definite,
Tx

S, Bgig_o

s; (D-13)

and hence

s.T (D-14)
3

by Equation (D-21). Again using the fact that B

is positive definite, it follows that

.= 0 (D-15)
5 >
fori=1, » Ty thus
E-3 %
A1 =0 (D-186)
and by (D-8)
s EX 3 *
A-A KT-0 (D-17)
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